Solu on:

$A B$ is the diameter of semicircle.
Let P be the centre of semicircle.
Construc on: JOIN CP, Join FP, Join EP
FP intersect CP at $H$ and EP at $M$
Given C is the mid point of Arc AB.
Hence $C P \perp A B$
Here $C P$ is the perpendicular bisector of $A B$.
Given that $E G \perp A B$
From (1) and (2) $\quad C P \| E G$
$\angle B F C=\frac{1}{2} \times \angle C P B=\frac{90^{\circ}}{2}=45^{\circ} \quad$ (Segment angle is half of central angle.)
Hence $\Delta \mathrm{BEF}$ is a right isosceles triangle.
FE =EB
In quadrilateral $\mathrm{EFPB}, \mathrm{PF}=\mathrm{PB}$ (radii) and $\mathrm{EF}=\mathrm{FB}$
So, EFPB is a kite,
$\Rightarrow E P \perp F B$ (diagonals are perpendicular in KITE)

Now in triangle EPB, $E G \perp P B$ and $B M \perp E P(E P \perp F B)$
So, O is the orthocentre of triangle EPB.
Hence Extended PO intersect EB at L
Hence $P L \perp E B \quad-----------(5)(A s \mathrm{O}$ is orthocentre of triangle EPB)
Given $F E \perp E B$
From (5) and (6) $F E\|P L \Rightarrow P O\| C E \quad------(7)$
From (3) and (7) CPOE is a parallelogram.
Hence EO =CP (radius)
$\Rightarrow E O=\frac{1}{2} \times A B$ (Proved) (As AB is the diameter)

DR SHYAM SUNDAR AGRAWAL
RANI RASHM ONI HIGH SCHOOL (H.S.)
104/A S N BANERJEE ROAD
TALTALA - KOLKATA
WEST BENGAL - 700014

